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Abstract: We present in detail some of the challenges in developing reusable robotic software.  We base that on 
our experience in developing the CLARAty robotics software, which is a generic object-oriented framework used 
for the integration of new algorithms in the areas of motion control, vision, manipulation, locomotion, navigation, 
localization, planning and execution.  CLARAty was adapted to a number of heterogeneous robots with different 
mechanisms and hardware control architectures.  In this paper, we also describe how we addressed some of these 
challenges in the development of the CLARAty software. 
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1. Introduction 
 
Within the NASA robotics community, and possibly 
within the research community, the majority of robotic 
software is designed and built from scratch for each new 
robot.  To date, it may have been easier and more cost 
effective to do so.  However, as robotic software gets 
more complicated and the time and effort to build reliable 
software increases, it becomes more important to develop 
reusable robotic software. 
Over the past decade, NASA, through its Mars 
Technology Program, developed a series of rovers to 
mature new algorithms for planetary surface exploration.  
The Jet Propulsion Laboratory (JPL) developed the Rocky 
series, where its fourth generation culminated in the 
successful Sojourner rover that landed on Mars in 1997.  
Following that, JPL developed the FIDO series that was 
the precursor to the Mars Exploration Rovers (MER), 
Spirit and Opportunity, which landed in 2004.   
NASA is interested in a reusable robotic framework to 
reduce the cost of integrating and testing of new 
capabilities that are developed at various institutions.  
JPL started the research and development of reusable 
robotic software back in 1996 with the development of the 
Rocky 7 rover.  The first generation reusable software was 
developed using a component architecture based on 
ControlShell (Volpe, 1997).  The Rocky 8 software was, 
then, adapted to this architecture.  Due to limitations for 
supporting additional platforms and to find commonality 
in the development of robotic software among other 

centers, we developed the Coupled Layer Architecture 
for Robotic Autonomy (CLARAty, 2005).  Started in 1999, 
CLARAty is the outcome of collaboration among JPL, 
Ames Research Center, and Carnegie Mellon (Volpe, 
2001).  In recent years, the University of Minnesota joined 
the team to develop the estimation framework.   
Given the heterogeneity of the NASA research rovers, it 
was incumbent upon us to provide a framework that did 
not require the redesign of existing hardware. 
Additionally it was necessary to support legacy 
algorithms with significant investments. 
While much of the context of this work focuses on robotic 
capabilities for planetary exploration, many of the 
challenges and approaches are more generally applicable. 
 
2. Related Work 
 
The development of general software architectures 
remains an active area of research in robotics (Coste-
Maniere, 2000). Much of the effort focuses on hierarchical 
or layered architectures although there is disagreement 
over how to decompose the hierarchy.  In the past, 
research focused on spatial or temporal hierarchies 
(Albus, 1991) and behavioral hierarchies (Brooks, 1986).  
More recently, the focus has been on functional 
decomposition into different layers implemented with 
data structures and algorithms specialized for particular 
classes of functionality (Coste-Maniere, 2000).  The most 
popular of such approaches is the three-tiered 
architecture (Bonasso, 1997) that features a declarative 
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planning layer, a procedural real-time behavioral layer, 
and an intermediate executive layer that mediates 
between the two.  CLARAty decomposes robotic software 
into two layers: a decision layer and a functional layer.  
This approach is similar to the three-tiered architecture 
except that the planning and execution layers are 
combined in order to provide much tighter coordination 
between generation and execution of plans. A second 
difference between CLARAty and the three-tiered 
architecture is that CLARAty’s robotic functionality can 
be accessed at different levels of abstraction.  A somewhat 
different two-layered approach is CIRCA (Musliner, 
1993) in which a planner/scheduler periodically creates 
and downloads policies to be executed in hard real-time 
by a reactive control system.  Unlike the hierarchy used in 
CLARAty’s Functional Layer, the reactive layer in CIRCA 
has no internal structure, which makes it difficult to 
implement complex behaviors. 
Other efforts in the robotics community aim at 
standardizing interfaces to robot hardware and among 
control processes.  Probably the most visible effort is the 
Joint Architecture for Unmanned Systems (JAUS, 2005), 
which aims at providing standardized message passing 
interfaces for all of the military’s unmanned vehicles. 
JAUS was initially developed by the Department of 
Defense to ensure interoperability among a family of 
Unmanned Ground Vehicles.  Similar to CLARAty, JAUS 
defines interfaces that are independent of the integrated 
technology or the specific hardware platforms.  While the 
goals of JAUS are similar to those of CLARAty, the 
approaches have significant differences. The JAUS 
architecture uses a single-level message-set, while 
CLARAty uses a multi-level abstraction model.    
Another effort that provides abstractions for robotic 
devices is Player/Stage (Gerkey, 2003).  Player/Stage is a 
device server that provides a flexible interface to a variety 
of sensors and actuators.  It is based on a client/server 
model that uses socket-based communications.  As a 
result, information exchange between components 
requires a serialization scheme, which can incur a 
significant cost for resource-constrained robots.  
Additionally, the current Player abstractions only address 
a limited set of capabilities primarily geared towards 
controlling commercial-off-the-shelf robots with simple 
mobility mechanisms. 
The Foundation for Intelligent Physical Agents (FIPA) is a 
similar effort in the world of multi-agent systems.  Unlike 
CLARAty, both FIPA and Player/Stage focus on the form 
of the interfaces and less on their content.  They are also 
aimed mainly at lower-level control, whereas CLARAty 
tries to address a more complex functional hierarchy. 
More recently, there have been several other related 
efforts driven by similar needs. We will only list two: The 
OROCOS project (OROCOS, 2005), which provides both 
hard real-time services and class libraries for robotic 
applications; and the OSCAR project (OSCAR, 2005), 
which uses a similar object-oriented decomposition to 

that of CLARAty for analysis, control, and simulation of 
manipulators.   
 
3. Challenges  
 
Developing reusable robotic software is difficult 
primarily due to the variability in robotic platforms.  
Initially, one may assume that by concretely defining the 
content and rate of information flow among the various 
subsystems, one establishes a plug-and-play robotic 
architecture.  While defining the information and its flow 
is necessary, it is not sufficient.  Both the content and 
pathways of the information flow change with various 
device and system configurations, as well as with 
different application programs. Hence, the flow of 
information among sub-systems has to be both flexible 
and efficient.  To reuse software components across a 
wide range of systems, it is also important that 
components of a robotic system make no assumptions 
about their operational platforms.  Therefore, it is 
necessary to share configuration, kinematic, and dynamic 
information among components.   
This section presents four major challenges that stem 
from trying to: (i) control heterogeneous robots, (ii) 
integrate and interoperate new capabilities, (iii) adjust 
access levels, and (iv) implement a generic framework.  In 
the next section, we will present some of the approaches 
that we used in CLARAty to overcome these challenges.  
The list of challenges below is not intended to be 
exhaustive, but rather characteristic of the key challenges 
that we faced in standardizing the development of robotic 
software. 
 
1.1. Control Heterogeneous Robots 
Because there are no standard robotic platforms, any 
reusable framework must be sufficiently flexible to 
address the variations in robots.  Robotic systems present 
challenges due to differences in their physical 
capabilities, sensor configuration, and hardware control 
architectures. 
The first challenge comes from physical variability. 
Consider the example of mobile rovers.  Within this class 
of rovers, there are wheeled rovers, legged rovers, and 
rovers that are a hybrid of the two.  Even within the 
wheeled rover subclass, platforms have different mobility 
mechanisms and wheel configurations.   Some have four 
wheels while others have six or eight wheels.  Some have 
all-wheels steering while others have only front-wheels 
steering.  Fig. 1 shows examples of various wheeled 
robots. 
Because of this physical variability, these robots possess 
different capabilities.  Fully-steerable (omni-directional) 
rovers can move laterally (crab) while partially-steerable 
(car-like) rovers have to use parallel parking maneuvers 
to obtain the same result.  For software to interoperate 
across such platforms, it has to provide a generic interface 
that handles these constraints. 
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When crafting a generalized interface, it is often the case 
that neither the union of all possible capabilities nor the 
intersection of such capabilities (least common 
denominator) is satisfactory.   The solution often lies 
somewhere in between.  In some cases, it is necessary to 
split the interface into two distinct units and lose the 
ability to interoperate between the two.  This occurs when 
it is necessary to highlight the differences between 
platforms rather than their commonality.  Trying to find 
the single unified interface can sometimes lead to 
undesirable over generalizations.  
The second challenge comes from differences in sensor 
configurations.  One situation is where different sensors 
produce similar information, but have different physical 
constraints.  For instance, consider sensors that generate 
terrain data that is represented as three-dimensional 
point clouds.  To generate this data, one can either use a 
lidar or a stereo camera pair.  While both devices 
eventually generate point clouds, these two devices 
operate with different constraints and have different 
qualities.  A lidar requires a longer time to scan a scene 
but less time to generate the depth information, while the 
opposite is true for stereo.  These behavioral differences 
generate constraints on the operation of the vehicle.  
Because of these variations in sensors, it is necessary for 
algorithms to interface to an appropriate abstraction of 
that sensor rather than to the actual sensor driver.   If a 
navigation algorithm that uses this data to find obstacles 
was interfaced to stereo cameras as opposed to point 
clouds, then it will not be possible to use this algorithm 
on rovers that use a lidar sensor in lieu of stereo cameras. 
Another situation is where similar data can be produced 
by either a single sensor or a suite of sensors.  For 
instance, consider inertial motion sensing.  Some robots 
may use individual gyroscopes and accelerometers in a 
unique configuration to measure the rover’s ego motions.  
Others may use an integrated Inertial Measurement Unit.  
In the first case, the hardware/software framework must 

ensure the synchronized acquisition and processing of 
these raw measurements, while in the second case, the 
interface to the IMU provides such capability.   
The third challenge comes from differences in hardware 
control architectures. On one end of the spectrum, there 
are robots that use a centralized processor to servo the 
motors, generate coordination trajectories, and run the 
application software.  Such systems often have signals 
mapped to memory registers in a centralized processor 
making the development of software relatively easy. 
However, they lack in modularity and are hard to extend.  
On the other end of the spectrum, there are systems that 
migrate much of their control to firmware in distributed 
nodes in order to reduce the load and real-time 
requirements on the central processor.   Other systems 
fall somewhere within this spectrum.  While each 
approach has its pros and cons, a general framework 
must handle these differences in the hardware control 
architecture, which has significant impact on information 
flow. 
In addition to these challenges that are found in both 
custom designed robots as well as commercial-off-the-
shelf robots, components that comprise a robotic system 
continue to change.  Image acquisition subsystems 
changed from analog cameras with centralized 
framegrabbers to distributed digital cameras connected to 
FireWire or USB buses.  Despite this, reusable robotic 
software must be sufficiently flexible to support such 
variations or rapidly adapt the software to handle them. 
 
1.2. Integrate and Interoperate New Capabilities 
The integration of algorithms is perhaps one of the most 
challenging elements in developing reusable robotic 
software.  The challenges stem from trying to integrate 
algorithms that use different representations of 
information and different architectures. 
The first challenge is in the multiple ways to represent 
similar information.  Consider, for instance, general 
transformations that connect one coordinate frame to 
another. Two ways for representing the orientation 
portion of these transformations are rotation matrices and 
quaternions. These representations have different 
characteristics in terms of efficiency and ease of 
use/understanding.  Conversion between them is both 
inefficient and error prone.   This is especially true when 
dealing with their covariances.  In addition, 
transformations cannot be defined in isolation.  They 
require a context that defines the relationships between 
frames and whether those frames represent fixed or 
articulated connections.  Without agreement on these 
representations, algorithms will be required to deal with 
these conversions in an ad hoc manner, leading to loosely 
integrated and inefficient software.   
The second challenge stems from architectural 
mismatches.  One issue is with components that integrate 
orthogonal functionality into a single modular unit.  This 
introduces artificial coupling of functionalities driven by 
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a specific implementation.  While such coupling may 
have some locally optimal performance, this often comes 
on the expense of global optimality.  
Another issue is with limitations of architectural 
frameworks.  Consider, for instance, a framework that 
does not time-stamp measurements collected from 
various devices.  Now consider an algorithm that collects 
data asynchronously and requires time-stamped 
measurements. If the underlying framework does not 
support time-stamped measurements, we have an 
architectural mismatch.  Similar situations occur when an 
algorithm requires high bandwidth information that may 
not be available for certain platforms. Diagnostic and 
health monitoring software often requires information 
about all aspects of the system at all times, which in many 
cases, may be limited or not possible. 
The interoperation of algorithms necessitates components 
that produce a similar output even though they may use 
different underlying technologies.  The challenge is to 
provide a framework in which a developer can work on 
an individual technology component and see how it 
interacts with a complete robotic system, without having 
to understand the entire system. 
 
1.3. Adjust Access and Control Levels 
In any complex system, it is important to be able to access 
and independently test each subsystem.  Characterizing 
the performance of individual subsystems requires a 
modular architecture that provides access at various 
levels of the architecture.  Also, interfacing with other 
systems requires adaptations at different levels of 
granularity.  This section covers both back-end and front-
end access. Back-end access is what gets adapted to 
hardware or simulation. Front-end access is what a client 
application uses to control the software. 
With respect to back-end access, consider the FIDO rover, 
which uses a central processor for the control and 
coordination of its motors.  The software framework must 
provide functionality for the servo control and trajectory 
generation for all motors.  In this case, the interface to 
hardware occurs at the low-level of digital and analog 
I/O.  However, in systems such as Rocky 8 or Rocky 7, 
which use micro-controllers for servo control and 
trajectory generation, the interface to hardware occurs at 
a higher level through communication with motor 
controllers.   
Providing multi-level access also benefits interfacing the 
control software with simulation.  Some simulations may 
not have the level of fidelity to simulate real hardware.  
In such cases, a higher-level interface would be necessary 
and appropriate.  There are other cases where a higher-
level interface is desirable to explore a larger set of 
scenarios without having to go through smaller steps of 
motion simulation.  For example, an interface between 
the control and simulation software at the locomotion 
level bypasses the lower level control and simulation of 
actual wheel motions.   

With respect to front-end access, client applications may 
need to access the system at different levels at different 
times.  For example, if the robotic arm has on-board 
autonomy for path planning, then one uses the high-level 
interface to define goal locations. However, in other 
situations where the arm has to be tele-operated, one 
needs to interface to lower-level motor velocities. 
 
1.4. Implement a Generic Software Framework 
Another major challenge stems from the inherent 
complexity and multi-disciplinary nature of the robotics 
domain.  Developing robotic capabilities for real systems 
is quite hard, but doing so with an overarching objective 
of supporting new platforms and algorithms that are not 
known a priori is a real challenge.  This process requires 
developers with both a depth of knowledge in robotics 
and breadth of experience and skills in the field.  
Developing a cross-cutting generic framework requires 
continuous refactoring of common elements across 
multiple disciplines.  There are shared capabilities among 
the vision, mobility, and manipulation domains.  They all 
require coordinate transformations, math libraries, and 
information about the mechanisms they control.  
Similarly, the science analysis and vision domains share 
abundant image processing infrastructure.   
To keep the complexity of systems manageable, and to 
simplify the testing and maintenance of the various 
packages, it is important to reduce code duplication as 
much as possible across domains.  This raises the 
question of when it is appropriate to encapsulate an 
algorithm vs. to refactor it using a common software 
framework.  The decision is often influenced by non-
technical factors involving the nature of the technology, 
the expertise necessary to re-implement the algorithm, 
the return of investment, and the long-term plan to 
support the algorithm as part of a common framework.  
Because any reusable robotic system is doomed to 
become enormous, it is strongly desirable to make the 
code repository complementary rather than duplicative. 
To support the integration of multiple algorithms and to 
support the adaptations of the framework to various 
robot platforms, it is necessary to have development tools 
and processes that support modularity.  Without the 
ability to check out and build parts of the generic robotic 
repository, it becomes too unwieldy to use.  The 
repository tools will eventually need to be integrated 
with the build system in order to dynamically check-out 
and configure the system using different 
implementations of a given functionality.  For instance, 
consider rover navigation that can use one of three 
algorithms for estimating the rover pose: a wheel 
odometry pose estimator, a visual odometry pose 
estimator, or multi-sensor pose estimator. Depending on 
the desired configuration, the software check-out and 
build will be different for each of the three configurations. 
Automated tools are necessary to manage this process. 



Nesnas et.al. / CLARAty: Challenges and Steps Toward Reusable Robotic Software 
 

027 

In addition, there are many challenges in software 
engineering that any generic framework for robotics will 
have to address.  No matter what the approach is used in 
the design, issues related to the flexibility, scalability of 
the approach, simplicity but not simplistic, extendibility, 
and long-term maintainability can only be judged over 
time.  The challenge is to find the delicate balance among 
the above elements. 
 
1.5. Address other Challenges 
Numerous other challenges remain in the development of 
a unified and reusable robotic framework, but it will 
suffice, here, to point to a few more. Some of these 
challenges include: dealing with system states especially 
ones that reside in hardware controllers where there is a 
cost associated for retrieving state information; logging of 
information at all levels; dealing with measurement 
uncertainties; dealing with differences in data flow 
models among platforms; dealing with multiple clients; 
supporting real-time operations; addressing abstract time 
for real and simulated platforms; and addressing 
distributed computation.  There are several additional 
social factors such as getting user buy-in, managing 
contributions from a distributed developer base, 
capturing feedback from the user community, and 
providing documentation, training and support.  
 
4. CLARAty 
 
CLARAty is a reusable robotic software framework to 
enable the integration of new capabilities onto various 
platforms.  We designed CLARAty to address the above 
challenges in software interoperability for rovers and 
manipulation platforms. CLARAty defines standard 
interfaces at different levels of abstractions for various 
devices and robotic algorithms.  It also provides 
candidate implementations for each algorithm as a 
starting point, though many algorithms were contributed 
through a competed program by robotic developers at 
universities and NASA centers.  In addition to interfaces 
and algorithms, CLARAty also provides adaptations of 
its device abstractions to custom and standard hardware 
and robotic platforms.  The CLARAty code base is 
designed with a modular structure to enable users to 
check out and work with only the parts of the software 
that meets their needs. The majority of the software is 
developed using object-oriented C++.   
In the following subsections, we will address the 
aforementioned challenges in an order that facilitates the 
description of some elements of CLARAty. 
 
1.6. Approach 
Because it is not realistic to expect a standard robotic 
platform any time soon, it becomes necessary to develop 
a software framework that would deal with the 
variability outlined in the previous section.  To do so, we 
analyzed in detail several existing robotic architectures 

and legacy implementations of several NASA robots, 
including Rocky 7, Rocky 8, FIDO, K9 and Dexter.  We 
also investigated the interactions between declarative 
model-based reasoning and these architectures. 
To meet the flexibility requirements for integrating 
different technologies, we developed CLARAty as a two-
layer architecture with a top decision layer and a bottom 
functional layer.   The decision layer uses a declarative 
model-based approach to define activities.  The input to 
this layer does not a priori specify the order of execution 
of activities.  Rather, activities are described with explicit 
system and mission constraints and a search engine 
orders these activities at runtime to provide a feasible 
plan.  The plan is then executed using an engine that is 
tightly integrated with the planner.  The functional layer, 
on the other hand, uses an object-oriented procedural 
approach where the sequence of execution is defined a 
priori and bounded by the software implementation.  
Hence, the system does not have to search for a feasible 
plan before execution.    
We architected the functional layer to use a multi-level 
abstraction model with polymorphic interfaces to address 
the variability of robotic systems.  At the mission level, a 
robot can plan and execute a number of activities in 
different order. At this level, a declarative model 
dominates.  However, the choices for actions become 
limited and time-constrained as you go down the 
hierarchy.  At these levels, a procedural model 
dominates. Most robotic systems use both models (Coste-
Maniere, 2000). Where one layer ends and another begins 
remains an active area of research.  Current practice has 
drawn the line between the two models at a high level, 
however, in CLARAty, the decision layer can access the 
functional layer at different levels. 
To address challenges in software implementation, we 
leverage many well-known techniques developed by the 
software community, including object-oriented 
architecture, design patterns, generic programming and 
component-based architecture (Gamma, 95) (Garlan, 
1996). Our experience shows that an object-oriented 
framework provides the necessary levels of abstraction to 
deal with the variability among platforms and 
algorithms.  It also provides extendible interfaces, strong 
type checking, polymorphic behavior, and data 
encapsulation, which are all necessary elements for the 
robust development of complex robotic systems. Most 
component interactions use method calls on class 
abstractions with only a few that use the more elaborate 
component-connector style interface.  The latter is 
primarily used when distributing computation across 
nodes is necessary (e.g. the interface between the decision 
and functional layers), which requires serialization and 
de-serialization of commands and information. 
Component-based architectures such as MDS (Dvorak, 
1999) and ControlShell (Pardo-Castellote, 1998) require 
additional frameworks for the explicit ordering and have 
coarser granularity for parallel execution of activities.  
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CLARAty, on the other hand uses the multi-threading 
model of its operating system to provide finer resolution 
on scheduling and pre-emption of activities. That requires 
though a multi-thread safe implementation of these 
algorithms.  
 
1.7. A Multi-level Abstraction Architecture 
The system is designed with abstractions at various levels 
from the low-level device abstractions to high-level 
functional abstractions.  At the lowest levels are device 
abstractions that get adapted to various platforms.  These 
include analog and digital I/O, motor, IMU, camera, and 
spectrometer abstractions.  At higher levels are 
abstractions that integrate various lower-level 
abstractions. Examples of these abstractions include 
locomotor, manipulator, pose estimator, navigator, and 
rover.  Higher-level abstractions provide interfaces for 
different robotic algorithms.  A more detailed description 
of the architecture and class abstractions can be found in 
Nesnas (Nesnas, 2003). 
In addressing architecture mismatches, there is often a 
fundamental tension between the desire to separate 
abstractions for conceptually distinct parts of the system 
and the reality of the coupling between hardware and 
software components. Consider, for instance, a camera 
that is powered by a power distribution subsystem. The 
camera device and the power subsystem have distinct 
functionality, and we would like to keep the 
implementation of their interfaces independent and 
modular.  However, at some point, a camera will have to 
be switched on/off.  So the question arises: should the 
user ask the power system to turn the camera on, or 
should the user ask the camera to switch itself on?  In the 
first case, the user has to know about the power system, 
and in the second case, the camera has to know about the 
power system. Neither case is ideal. For someone who 
cares only about images, the power system is a nuisance; 
for system designer, the dependency between the camera 
and the power system leads to a break in modularity.  We 
address this type of problem by using light-weight 
function objects (functors). An abstract power functor 
provides an interface to turn a device on/off and to 
measure its voltage and current draw. The power 
distribution system then creates these objects on request 
and gives them to devices as they are built. Some part of 
the initialization code, therefore, needs to know the 
coupling between the power distribution subsystem and 
the camera. However, using this approach, cameras are 
not aware of the underlying implementation of power 
switching, and users can now ask the camera directly to 
turn itself on or to report on its current draw. 
To operate the software on real and simulated platforms 
and to support “what if” planning scenarios, we separate 
mechanism models from their controls. To address the 
variability of different mechanisms, we use flexible 
abstractions that capture the model characteristics for use 
by various applications.  This modeling captures 

geometric information in order to support collision 
prediction and detection for safe robot operations.  
Typical robot applications require forward and inverse 
kinematics algorithms. We will provide generic solvers 
for the kinematics and inverse dynamics for the generic 
model framework.  Because some applications require 
high-speed robot motions with tight control loops, we 
support the overriding of the generic solvers with more 
efficient mechanism-specific implementations.  We define 
a set of abstractions to also describe the interactions and 
contacts of the mechanism with its environment.  For 
more details on the mechanism modeling in CLARAty, 
please refer to Diaz-Calderon (Diaz-Calderon, 2005).  
One of the main features of CLARAty is its ability to 
interoperate robotic algorithms.  There are many 
challenges that make this difficult, including the problem 
of making algorithms themselves generic in the first 
place.  At first, it may seem easy to provide a common 
API to a collection of, say, stereo algorithms: the primary 
interface takes a pair of images with their corresponding 
camera models and produces a disparity map. This 
seemingly abstract interface fails with the first step of 
most stereo algorithms, when images are rectified to 
remove lens distortion and ensure epipolar alignment. 
This is because legacy implementations of stereo 
algorithms typically perform rectification internally, and 
the algorithm for producing the rectification depends on 
the underlying implementation of the camera model.  
There are several possibilities to make the stereo vision 
API truly generic: (i) pass in only rectified and aligned 
images to the stereo algorithm without needing to pass in 
camera models, or (ii) pass in images with their 
corresponding camera models, however, have the camera 
models implement rectification (both to remove lens 
distortion and epipolar align images).  Each of these 
implementations has its own drawbacks; the usual 
tradeoff is between simplicity and performance. Epipolar 
alignment is primarily useful for stereo, so making it a 
requirement on the camera model class is somewhat 
awkward and a burden to implementers of new models, 
such as push broom camera models. On the other hand, 
requiring the user to rectify  images before handing them 
to a stereo algorithm is also something of a burden, 
particularly if the user must take extra steps to keep the 
rectification efficient, for example when batch processing 
several image pairs that all have the same epipolar 
relationship.  In this case, we prefer the solution that 
keeps the interface generic. This means that more work is 
required when integrating legacy algorithms into the 
system, and it shows that the most abstract interface is 
not necessarily going to be the simplest. However, with a 
truly abstract interface to stereo algorithms, a user will be 
able to mix and match camera models and stereo 
implementations to find the best combination of 
components for a particular application. This flexibility 
more than makes up for the additional complexity that 
the user must address. 
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Autonomous navigation, which provides obstacle 
avoidance capabilities for mobile robots, uses many of the 
lower level capabilities, such as vehicle locomotor, point 
cloud sources, local and global path planners, and pose 
estimators.  First, a generic interface was designed that 
allows higher levels to invoke the navigation 
functionality in the same way, regardless of what 
algorithm is actually being used or which rover is being 
controlled.  This “navigation” interface basically indicates 
goal points (or, more generally, goal regions) that the 
robot must reach.  Navigation algorithms are then 
adapted to this framework to accept input from the 
CLARAty point cloud source and command the rover 
using the vehicle locomotor, a generic interface to a wide 
range of supported rovers.  More fundamentally, 
however, navigation algorithms that were adapted to 
CLARAty all had to be extended to plan generically for 
different rovers.  For instance, the algorithms all need to 
know the maximum steering angles to determine how 
tight turns can be made and the size of the rover to 
determine what distance between obstacles constitutes a 
safe passage.  This was accomplished with the 
mechanism model described above.  In addition, to 
support the Morphin algorithm (Urmson, 2003), the 
mechanism model class can perform a kinematic 
simulation of the rover.  This enables the algorithm to 
integrate costs along the rover’s path without having to 
know explicitly how the rover moves.  In current work, 
Carnegie Mellon is developing navigation algorithms that 
take vehicle dynamics into account, and we expect to 
extend the mechanism model to support dynamical 
simulation, as well. 
On the various access and integration levels, algorithms 
can be integrated into CLARAty in different ways.  Some 
algorithms can be encapsulated behind the generic 
CLARAty APIs, while others can be refactored to 
leverage CLARAty’s data structures and generic classes 
that we believe may be useful for many different 
algorithms. Refactoring algorithms enables more efficient 
and consistent representation of the internals of an 
algorithm. For instance, the GESTALT (Goldberg, 2002) 
algorithm that was flown on MER rovers was 
encapsulated into CLARAty while the Morphin 
algorithm was refactored. Currently, we are refactoring 
the Drivemaps algorithm (Huntsberger, 2001).  The goal 
is to determine how much reuse can be made from 
algorithms that have fundamentally different approaches 
to the same problem.  While complete reuse of the classes 
is unlikely, we have found that splitting the algorithms 
into terrain analysis and action selection components 
seems to be common amongst the algorithms that we 
have investigated to date. 
 
1.8. Empirical Results 
We have developed autonomous end-to-end rover 
capabilities such as autonomously placing an instrument 
on a target selected from 10 meters away.  Such capability 

integrates visual tracking of the designated target using 
multiple rover mounted cameras while navigating to the 
target location; assessing the safety of the target region; 
properly positioning the rover relative to the target for 
instrument deployment; deploying and placing the 
robotic arm that carries the science instrument on the 
target; acquiring the scientific data and simulating a 
downlink to Earth.  
We have deployed and extensively tested CLARAty on 
half a dozen robotic platforms.  Fig. 1 shows a subset of 
these platforms, which include the custom Rocky 8, 
FIDO, Rocky 7, and K9 rovers, as well as the ATRV Jr. 
commercial platform.  These platforms have different 
mobility mechanisms and wheel configurations as well as 
different sensor suites, manipulators, end effectors, 
processors, motion control architectures and operating 
systems.  In addition to these real-platform adaptations, 
we have also adapted CLARAty to operate with the high-
fidelity ROAMS rover and terrain simulator (Jain, 2004). 
A large number of complex algorithms have been 
integrated into CLARAty and deployed on the above 
platforms. For autonomous navigation, we have 
integrated the GESTALT algorithm that is driving the 
MER rovers today on the Martian surface, the Morphin 
algorithm that GESTALT was based on, and the 
Drivemaps algorithm.  In each case, the original 
implementation had to be modified and generalized in 
relatively minor ways to fit the CLARAty framework. For 
rover pose estimation, we have adapted five algorithms 
including the Sojourner algorithm (Mishkin, 1998), the 
MER pose estimator algorithm, and an algorithm that 
integrates all sensing modalities (Roumeliotis, 2002).  
These algorithms all require data from different sensors, 
including wheel encoders, gyroscopes, IMUs, sun sensors 
and stereo cameras.  We also integrated three stereo 
vision implementations and several algorithms for visual 
tracking, visual odometry, sensor-based manipulation, 
path planning, science analyses, activity planning, and 
scheduling.  Many of these have been tested on multiple 
platforms and as part of end-to-end capabilities.  
 
5. Conclusion 
 
Developing reusable robotic software presents many 
challenges.  These challenges stem from variability in 
robotic mechanisms, sensor configurations, and hardware 
control architectures.  They also stem from integrating 
new capabilities that use different representations of 
information or that have architectural mismatches with 
the reusable framework.  We found that multi-level 
abstraction models, object-oriented methodologies and 
design patterns go a long way to address the extensive 
variability that is encountered in today’s robotic 
platforms.  We have learned that over-generalizing 
interfaces makes them harder to understand and use.  
There is a delicate balance between flexibility and 
simplicity. Performance cannot be compromised for the 
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sake of flexibility and the least common denominator 
solution is often unacceptable.  It is necessary to have 
flexible development environments, tools, and regression 
tests. Reusable software products and processes have to 
be well documented. It would be highly desirable to 
standardize robotic hardware but that may not be feasible 
today. 
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